Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements

نویسندگان

  • Suho Oh
  • Hwanchul Yoo
چکیده

We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is rationally smooth. Résumé. Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans. Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 07 BRUHAT ORDER , SMOOTH SCHUBERT VARIETIES , AND HYPERPLANE ARRANGEMENTS

The aim of this article is to link Schubert varieties in the flag manifold with hyperplane arrangements. For a permutation, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is smooth. We give an explicit com...

متن کامل

Bruhat order, smooth Schubert varieties, and hyperplane arrangements

The aim of this article is to link Schubert varieties in the flag manifold with hyperplane arrangements. For a permutation, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is smooth. We give an explicit com...

متن کامل

Rationally smooth Schubert varieties, inversion hyperplane arrangements, and Peterson translation

We show that an element w of a finite Weyl group W is rationally smooth if and only if the hyperplane arrangement I(w) associated to the inversion set of w is inductively free, and the product (d1 +1) · · · (dl +1) of the coexponents d1, . . . , dl is equal to the size of the Bruhat interval [e, w]. We also use Peterson translation of coconvex sets to give a Shapiro-Steinberg-Kostant rule for t...

متن کامل

Combinatorics in Schubert varieties and Specht modules

This thesis consists of two parts. Both parts are devoted to finding links between geometric/algebraic objects and combinatorial objects. In the first part of the thesis, we link Schubert varieties in the full flag variety with hyperplane arrangements. Schubert varieties are parameterized by elements of the Weyl group. For each element of the Weyl group, we construct certain hyperplane arrangem...

متن کامل

Inversion arrangements and Bruhat intervals

Let W be a finite Coxeter group. For a given w ∈ W , the following assertion may or may not be satisfied: (∗) The principal Bruhat order ideal of w contains as many elements as there are regions in the inversion hyperplane arrangement of w. We present a type independent combinatorial criterion which characterises the elements w ∈ W that satisfy (∗). A couple of immediate consequences are derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010